The NORAD mean element sets can be used for prediction with SDP8. All symbols
not defined below are defined in the list of symbols in Section Twelve. The
original mean motion (n''o) and semimajor axis (a''o) are first
recovered from the input elements by the equations
#math317#
a1 = #tex2html_wrap_indisplay4547##tex2html_wrap_indisplay4548##tex2html_wrap_indisplay4549#
#math318#
δ1 = #tex2html_wrap_indisplay4551##tex2html_wrap_indisplay4552##tex2html_wrap_indisplay4553#
#math319#
ao = a1#tex2html_wrap_indisplay4555#1 - #tex2html_wrap_indisplay4556#δ1 - δ12 - #tex2html_wrap_indisplay4559#δ13#tex2html_wrap_indisplay4562#
#math320#
δo = #tex2html_wrap_indisplay4564##tex2html_wrap_indisplay4565##tex2html_wrap_indisplay4566#
#math321#
n''o = #tex2html_wrap_indisplay4568#
#math322#
a''o = #tex2html_wrap_indisplay4570#.
The ballistic coefficient (B term) is then calculated from the B* drag
term by
#math323#
B = 2B*/ρo
where
#math324#
ρo = (2.461×10-5)#tex2html_wrap_indisplay4575#
is a reference value of atmospheric density.
Then calculate the constants
#math325#
β2 = 1 - e2
#math326#
θ = cos i
#math327#
#tex2html_wrap_indisplay4579# = - #tex2html_wrap_indisplay4580##tex2html_wrap_indisplay4581#(1 - 3θ2)
#math328#
#tex2html_wrap_indisplay4583# = - #tex2html_wrap_indisplay4584##tex2html_wrap_indisplay4585#(1 - 5θ2)
#math329#
#tex2html_wrap_indisplay4587# = - 3#tex2html_wrap_indisplay4588#θ
#math330#
#tex2html_wrap_indisplay4590# = #tex2html_wrap_indisplay4591##tex2html_wrap_indisplay4592#(13 - 78θ2 +137θ4)
#math331#
#tex2html_wrap_indisplay4594# = #tex2html_wrap_indisplay4595##tex2html_wrap_indisplay4596#(7 - 114θ2 +395θ4) + #tex2html_wrap_indisplay4597##tex2html_wrap_indisplay4598#(3 - 36θ2 +49θ4)
#math332#
#tex2html_wrap_indisplay4600# = #tex2html_wrap_indisplay4601##tex2html_wrap_indisplay4602#θ(4 - 19θ2) + #tex2html_wrap_indisplay4603##tex2html_wrap_indisplay4604#θ(3 - 7θ2)
#math333#
#tex2html_wrap_indisplay4606# = n''o + #tex2html_wrap_indisplay4607# + #tex2html_wrap_indisplay4608#
#math334#
#tex2html_wrap_indisplay4610# = #tex2html_wrap_indisplay4611# + #tex2html_wrap_indisplay4612#
#math335#
#tex2html_wrap_indisplay4614# = #tex2html_wrap_indisplay4615# + #tex2html_wrap_indisplay4616#
#math336#
ξ = #tex2html_wrap_indisplay4618#
#math337#
η = esξ
#math338#
ψ = #tex2html_wrap_indisplay4621#
#math339#
α2 = 1 + e2
#math340#
Co = #tex2html_wrap_indisplay4624#Bρo(qo - s)4n''a''ξ4α-1ψ-7
#math341#
C1 = #tex2html_wrap_indisplay4626#n''α4Co
#math342#
D1 = ξψ-2/a''β2
#math343#
D2 = 12 + 36η2 + #tex2html_wrap_indisplay4629#η4
#math344#
D3 = 15η2 + #tex2html_wrap_indisplay4631#η4
#math345#
D4 = 5η + #tex2html_wrap_indisplay4633#η3
#math346#
D5 = ξψ-2
#math347#
B1 = - k2(1 - 3θ2)
#math348#
B2 = - k2(1 - θ2)
#math349#
B3 = #tex2html_wrap_indisplay4638#sin i
#math350#
C2 = D1D3B2
#math351#
C3 = D4D5B3
#math352#
#tex2html_wrap_indisplay4642# = C1#tex2html_wrap_indisplay4643#2 + 3η2 +20eη +5eη3 + #tex2html_wrap_indisplay4644#e2 +34e2η2 + D1D2B1 + C2cos 2ω + C3sinω#tex2html_wrap_indisplay4645#
#math353#
#tex2html_wrap_indisplay4647# = - #tex2html_wrap_indisplay4648##tex2html_wrap_indisplay4649#(1 - e)
where all quantities are epoch values.
At this point SDP8 calls the initialization section of DEEP which calculates all
initialized quantities needed for the deep-space perturbations (see Section
Ten).
The secular effect of gravity is included in mean anomaly by
#math354#
MDF = Mo + #tex2html_wrap_indisplay4651#(t - to)
and the secular effects of gravity and atmospheric drag are included in
argument of perigee and longitude of ascending node by
#math355#
ω = ωo + #tex2html_wrap_indisplay4653#(t - to) + #tex2html_wrap_indisplay4654#Z7
#math356#
Ω = Ωo + #tex2html_wrap_indisplay4656#(t - to) + #tex2html_wrap_indisplay4657#Z7
where
#math357#
Z7 = #tex2html_wrap_indisplay4659#Z1/n''o
with
#math358#
Z1 = #tex2html_wrap_indisplay4661##tex2html_wrap_indisplay4662#(t - to)2.
Next, SDP8 calls the secular section of DEEP which adds the deep-space secular
effects and long-period resonance effects to the six classical orbital elements
(see Section Ten).
The secular effects of drag are included in the remaining elements by
#math359#
n = nDS + #tex2html_wrap_indisplay4664#(t - to)
#math360#
e = eDS + #tex2html_wrap_indisplay4666#(t - to)
#math361#
M = MDS + Z1 + #tex2html_wrap_indisplay4668#Z7
where nDS, eDS, MDS are the values of no, eo, MDF
after deep-space secular and resonance perturbations have been applied.
Here, SDP8 calls the periodics section of DEEP which adds the deep-space lunar
and solar periodics to the orbital elements (see Section Ten). From this point
on, it will be assumed that n, e, I, ω, Ω, and M are the
mean motion, eccentricity, inclination, argument of perigee, longitude of
ascending node, and mean anomaly after lunar-solar periodics have been added.
Solve Kepler's equation for E by using the iteration equation
#math362#
Ei+1 = Ei + ΔEi
with
#math363#
ΔEi = #tex2html_wrap_indisplay4684#
and
#math364#
E1 = M + e sin M + #tex2html_wrap_indisplay4686#e2sin 2M.
The following equations are used to calculate preliminary quantities needed for
the short-period periodics.
#math365#
a = #tex2html_wrap_indisplay4688##tex2html_wrap_indisplay4689##tex2html_wrap_indisplay4690#
#math366#
β = (1 - e2)#tex2html_wrap_indisplay4692#
#math367#
sin f = #tex2html_wrap_indisplay4694#
#math368#
cos f = #tex2html_wrap_indisplay4696#
#math369#
u = f + ω
#math370#
r'' = #tex2html_wrap_indisplay4699#
#math371#
#tex2html_wrap_indisplay4701# = #tex2html_wrap_indisplay4702#sin f
#math372#
(r#tex2html_wrap_indisplay4704#)'' = #tex2html_wrap_indisplay4705#
#math373#
δr = #tex2html_wrap_indisplay4707##tex2html_wrap_indisplay4708#[(1 - θ2)cos 2u + 3(1 - 3θ2)] - #tex2html_wrap_indisplay4709##tex2html_wrap_indisplay4710#sin iosin u
#math374#
δ#tex2html_wrap_indisplay4712# = - n#tex2html_wrap_indisplay4713##tex2html_wrap_indisplay4714##tex2html_wrap_indisplay4715##tex2html_wrap_indisplay4716##tex2html_wrap_indisplay4717#(1 - θ2)sin 2u + #tex2html_wrap_indisplay4718##tex2html_wrap_indisplay4719#sin iocos u#tex2html_wrap_indisplay4720#
#math375#
δI = θ#tex2html_wrap_indisplay4722##tex2html_wrap_indisplay4723##tex2html_wrap_indisplay4724#sin iocos 2u - #tex2html_wrap_indisplay4725##tex2html_wrap_indisplay4726#e sinω#tex2html_wrap_indisplay4727#
#math376#
δ(r#tex2html_wrap_indisplay4729#) = - n#tex2html_wrap_indisplay4730##tex2html_wrap_indisplay4731##tex2html_wrap_indisplay4732#δr + na#tex2html_wrap_indisplay4733##tex2html_wrap_indisplay4734##tex2html_wrap_indisplay4735##tex2html_wrap_indisplay4736#δI
#math377#
δu = #tex2html_wrap_indisplay4738#
#math378#
δλ = #tex2html_wrap_indisplay4740#
The short-period periodics are added to give the osculating quantities
#math379#
r = r'' + δr
#math380#
#tex2html_wrap_indisplay4743# = #tex2html_wrap_indisplay4744# + δ#tex2html_wrap_indisplay4745#
#math381#
r#tex2html_wrap_indisplay4747# = (r#tex2html_wrap_indisplay4748#)'' + δ(r#tex2html_wrap_indisplay4749#)
#math382#
y4 = sin#tex2html_wrap_indisplay4751#sin u + cos u sin#tex2html_wrap_indisplay4752#δu + #tex2html_wrap_indisplay4753#sin u cos#tex2html_wrap_indisplay4754#δI
#math383#
y5 = sin#tex2html_wrap_indisplay4756#cos u - sin u sin#tex2html_wrap_indisplay4757#δu + #tex2html_wrap_indisplay4758#cos u cos#tex2html_wrap_indisplay4759#δI
#math384#
λ = u + Ω + δλ.
Unit orientation vectors are calculated by
#math385#
Ux = 2y4(y5sinλ - y4cosλ) + cosλ
#math386#
Uy = - 2y4(y5cosλ + y4sinλ) + sinλ
#math387#
Uz = 2y4cos#tex2html_wrap_indisplay4764#
#math388#
Vx = 2y5(y5sinλ - y4cosλ) - sinλ
#math389#
Vy = - 2y5(y5cosλ + y4sinλ) + cosλ
#math390#
Vz = 2y5cos#tex2html_wrap_indisplay4768#
where
#math391#
cos#tex2html_wrap_indisplay4770# = #tex2html_wrap_indisplay4771#.
Position and velocity are given by
#math392#
#tex2html_wrap_indisplay4773# = r#tex2html_wrap_indisplay4774#
#math393#
#tex2html_wrap_indisplay4776# = #tex2html_wrap_indisplay4777##tex2html_wrap_indisplay4778# + r#tex2html_wrap_indisplay4779##tex2html_wrap_indisplay4780#.
A FORTRAN IV computer code listing of the subroutine SDP8 is given below.
#center4781#